Cork quality classification system using a unified image processing and fuzzy-neural network methodology

نویسندگان

  • Joongho Chang
  • Gunhee Han
  • José M. Valverde
  • Norman C. Griswold
  • J. Francisco Duque-Carrillo
  • Edgar Sánchez-Sinencio
چکیده

Cork is a natural material produced in the Mediterranean countries. Cork stoppers are used to seal wine bottles, Cork stopper quality classification is a practical pattern classification problem. The cork stoppers are grouped into eight classes according to the degree of defects on the cork surface. These defects appear in the form of random-shaped holes, cracks, and others. As a result, the classification cork stopper is not a simple object recognition problem. This is because the pattern features are not specifically defined to a particular shape or size. Thus, a complex classification form is involved, Furthermore, there is a need to build a standard quality control system in order to reduce the classification problems in the cork stopper industry. The solution requires factory automation meeting low time and reduced cost requirements. This paper describes a cork stopper quality classification system using morphological filtering and contour extraction and following (CEF) as the feature extraction method, and a fuzzy-neural network as a classifier. This approach will be used on a daily basis. A new adaptive image thresholding method using iterative and localized scheme is also proposed, A fully functioning prototype of the system has been built and successfully tested. The test results showed a 6.7% rejection ratio, It is compared with the 40% counterpart provided by traditional systems. The human experts in the cork stopper industry rated this proposed classification approach as excellent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of brain tumor using image processing and determination of its type with RVM neural networks

Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...

متن کامل

Identification of Houseplants Using Neuro-vision Based Multi-stage Classification System

In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Study on the Trend of Range Cover Changes Using Fuzzy ARTMAP Method and GIS

The major aim of processing satellite images is to prepare topical and effectivemaps. The selection of appropriate classification methods plays an important role. Amongvarious methods existing for image classification, artificial neural network method is ofhigh accuracy. In present study, TM images of 1987, and ETM+ images of 2000 and 2006were analyzed using artificial fuzzy ARTMAP neural netwo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 1997